Non-Crystalline Diffraction and Scattering at the BioCAT Facility at the Advanced Photon Source

Tom Irving
BioCAT, CSRRI and Dept. BCPS, Illinois
Institute of Technology, Chicago IL

What is BioCAT?

- A NIH-supported research center for the study of partially ordered and disordered biological materials
- Comprises an undulator based beamline, (18-ID) associated laboratory and computational facilities.
- Available to all scientists on basis of peerreviewed beamtime proposals

Scientific Mission of BioCAT

Modality	Applications
Fiber Diffraction	Muscle, Connective Tissue, virus structure,
	DNA, Amyloids
Solution Scattering	Protein/RNA folding, Protein-ligand
	interactions
Scanning µ-x-ray	Metal metabolism, neuro-degenerative
florescence	disease, cancer
microscopy and	
diffraction imaging	

SAXS Instrument on the BioCAT 18ID - Undulator Beamline

- Total X-ray flux 1-2.5 x10¹³ photons/s
- Focal spot size ranges from $< 50 \mu m$ vertical and $< 150 \mu m$ horizontal to $\sim 3 \times 1.5 mm$

Why is Doubly Focused Undulator Radiation Good for SAXS/NCD Studies?

- High flux density for time-resolved applications and obtaining good counting statistics from weakly scattering systems
- Small focal spots along with well-matched high resolution area detectors allow resolving weak diffraction features in the presence of high backgrounds typical of biological samples
- Spatially resolved systems (Micro-diffraction)

Aviex PCCD 16080 Detector

160 x 80 mm

2000 x 4000 39 μm pixels

~5/ADU's/12 keV Photon

~1 ADU read noise

~1 s readout

Flexible binning modes

Both high sensitivity and high spatial resolution

Pilatus 100K Photon Counting Detector

2D detector, continuous readout till computer disk full

Pixel size $172 \times 172 \mu m^2$

Format $487 \times 195 = 94965$ pixels

Active area 83.8 x 33.5 mm²

Counting rate > 2x10⁶ counts/s/pixel

Energy range 3 – 30 keV

Readout time < 2.7 ms Framing rate > 200 Hz

Power consumption 5W, air cooled

Limited Energy resolving ability

200 ns electronic gating possible

Micro-Diffraction

Minimum focal spot size ~ 5 x 5 μm

Can adjust focal spot position on the fly to optimize flux vs. divergence

CCD detector with 4000 x 4000 40 µm pixels

Automated "Diffraction Mapping" possible

Structural Studies of Collagen Type 2 from Lamprey Notochord(Orgel)

Histology mapping shows where the most crystalline /oriented regions are

located

Solution Scattering

(\sim 8 Å resolution using data up to q=0.8)

Camera lengths from

 $\sim 1 \text{ m to } 3.5 \text{ m}$

Standard lengths:

2 m q range:

 $0.007 \text{ Å}^{-1} \text{ to } 0.4 \text{ Å}^{-1}$

3m q range:

 $0.005 \text{ Å}^{-1} \text{ to } 0.3 \text{ Å}^{-1}$

FPLC + SAXS

Plasminogen data courtesy N. Menhart, IIT

Stopped Flow for Kinetics

- •Bio-Logic SFM-400 stopped-flow with new Biologic MEC 22998 microvolume mixer
- •~ 0.5 ms dead time
- •Requires flow rate of 8ml/s of sample.
- Typical sample consumption $\sim 250 \ \mu l$ (mixed volume) per mixing event

Stopped Flow with Pilatus Detector

Continuous
SAXS data
acquisition with
a time resolution
of 1 ms with a
reaction dead
time of 0.5 ms.

Data courtesy of Briber/Woodson group

Sub-Millisecond Time Resolved Studies with Turbulent Flow Mixers (Osman Bilsel)

4.5 M→ 0.45 M GdnHCl refolding (with 0.2M imidazole) of cytochrome c

Time resolution : ~80 microseconds

BioCAT Staff

- Dr. Olga Antipova
- Dr. Srinivas Chakravarthy
- Mr. Rich Heurich
- Prof. Tom Irving
- Ms. Clareen Krolik
- Prof. Joseph Orgel
- Mr. Mark Vukonich
- Dr. Weifeng Shang

BioCAT is supported by the: National Institute of General Medical Sciences 9 P41 GM103622-17

Part of the US National Institutes of Health